Loop groups and related affine Lie algebras
نویسندگان
چکیده
منابع مشابه
Double Affine Lie Algebras and Finite Groups
We begin to study the Lie theoretical analogs of symplectic reflection algebras for Γ a finite cyclic group, which we call “cyclic double affine Lie algebra”. We focus on type A : in the finite (resp. affine, double affine) case, we prove that these structures are finite (resp. affine, toroidal) type Lie algebras, but the gradings differ. The case which is essentially new is sln(C[u, v] o Γ). W...
متن کاملLie Algebras, Algebraic Groups, and Lie Groups
These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...
متن کاملSymplectic Reflection Algebras and Affine Lie Algebras
These are the notes of my talk at the conference “Double affine Hecke algebras and algebraic geometry” (MIT, May 18, 2010). The goal of this talk is to discuss some results and conjectures suggesting that the representation theory of symplectic reflection algebras for wreath products categorifies certain structures in the representation theory for affine Lie algebras. These conjectures arose fr...
متن کاملLie Groups and Lie Algebras
A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1989
ISSN: 0386-2194
DOI: 10.3792/pjaa.65.187